Логин:  @  Пароль: 
Создать новый почтовый ящик

   | На главную | Форум | ОбъявленияЧат | Сделать стартовойПоставить закладкуДобавить сайт в каталог |
Разделы сайта

Рассылка

CLX TOP - 100





Железо

FAQ по системным платам IBM PC

- Я хотел бы кое-что узнать о моей плате - как мне описать ее?

Прежде всего - привести ее фирменное название. Если его нет - привести надписи на плате, которые могут быть похожи на название. Описать основные признаки платы (под какой процессор, какие шины, сколько разъемов каждой шины, сколько каких разъемов под кэш/память, что написано на больших микросхемах и т.п.). Если плата не имеет фирменного названия, имеет смысл привести строку идентификации BIOS, которая выводится при перезагрузке внизу экрана, и тип самого BIOS (AMI, AWARD, Phoenix, Acer и т.п.). Чем больше информации - тем выше вероятность верного опознания платы другими и получения ответов на заданные вопросы.

- Что такое Chipset?

Chip Set - набор микросхем. Это одна или несколько микросхем, таймеры, систему управления специально разработанных для "обвязки" микропроцессора. Они содержат в себе контроллеры прерываний, прямого доступа к памяти, памятью и шиной - все те компоненты, которые в оригинальной IBM PC были собраны на отдельных микросхемах. Обычно в одну из микросхем набора входят также часы реального времени с CMOS-памятью и иногда - клавиатурный контроллер, однако эти блоки могут присутствовать и в виде отдельных чипов. В последних разработках в состав микросхем наборов для интегрированных плат стали включаться и контроллеры внешних устройств.

Внешне микросхемы Chipset'а выглядят, как самые большие после процессора, с количеством выводов от нескольких десятков до двух сотен. Название набора обычно происходит от маркировки основной микросхемы - OPTi495SLC, SiS471, UMC491, i82C437VX и т.п. При этом используется только код микросхемы внутри серии: например, полное наименование SiS471 - SiS85C471. Последние разработки используют и собственые имена; в ряде случаев это - фирменное название (Neptun, Mercury, Triton, Viper), либо собственная маркировка чипов третьих фирм (ExpertChip, PC Chips).

Тип набора в основном определяет функциональные возможности платы: типы поддерживамых процессоров, структура/объем кэша, возможные сочетания типов и объемов модулей памяти, поддержка режимов энергосбережения, возможность программной настройки параметров и т.п. На одном и том же наборе может выпускаться несколько моделей системных плат, от простейших до довольно сложных с интегрированными контроллерами портов, дисков, видео и т.п.

- Что такое IRQ и DMA и как их распpеделять?

IRQ (Interrupt ReQuest - запрос прерывания) - сигнал от одного из узлов компьютера, требующий внимания процессора к этом узлу. Возникает при наступлении какого-либо события (например, нажатии клавиши, завершении операции чтения/записи на диске и т.п.). На PC AT предусмотрено 15 (на XT - 8) линий IRQ, часть которых используется внутренними контроллерами системной платы, а остальные заняты стандартными адаптерами либо не используются:

0 - системный таймер

1 - контроллер клавиатуры

2 - сигнал возврата по кадру (EGA/VGA), на AT соединен с IRQ 9

3 - обычно COM2/COM4

4 - обычно COM1/COM3

5 - контроллер HDD (XT), обычно свободен на AT

6 - контроллер FDD

7 - LPT1, многими LPT-контроллерами не используется

8 - часы реального времени с автономным питанием (RTC)

9 - параллельна IRQ 2

10 - не используется

11 - не используется

12 - обычно контроллер мыши типа PS/2

13 - математический сопроцессор

14 - обычно контроллер IDE HDD (первый канал)

15 - обычно контроллер IDE HDD (второй канал)
На AT и всех современных платах сигнал IRq 2 схемно поступает на вход, соответствующий IRq 9 и вызывает запуск обработчика прерываний, связанного с IRq 9, который программно эмулирует прерывание по IRq 2. Таким образом, программы, работающие с IRq 9, будут работать всегда, а использующие IRq 2 - могут не работать, если не установлен правильный обработчик IRq 9.

DMA (Direct Memory Access - прямой доступ к памяти) - способ обмена данными между внешним устройством и памятью без участия процессора, что может заметно снизить нагрузку на процессор и повысить общую производительность системы. Режим DMA позволяет освободить процессор от рутинной пересылки данных между внешними устройствами и памятью, отдав эту работу контроллеру DMA; процессор в это время может обрабатывать другие данные или другую задачу в многозадачной системе. На PC AT есть 7 (на XT - 4) независимых каналов контроллера DMA:

0 - регенерация памяти на некоторых платах

1 - не используется

2 - контроллер FDD

3 - контроллер HDD на XT, на AT не используется

5 - не используется

6 - не используется

7 - не используется
Каналы 0-3 - восьмиразрядные, каналы 5-7 - шестнадцатиразрядные.

С учетом этого, новые адаптеры следует настраивать прежде всего на полностью свободные каналы IRQ (10, 11) и DMA (1, 5-7), а затем - на свободные в конкретной системе (например, IRQ 5 или 12, DMA 3). Возможность использования одного IRQ несколькими адаптерами зависит от типа шины и требует поддержки со стороны драйверов этих адаптеров. Использование разными адаптерами одного канала DMA в принципе возможно, но связано со множеством проблем и потому не рекомендуется.

- Что такое BIOS и зачем он нужен?

Это Basic Input/Output System - основная система ввода/вывода, зашитая в ПЗУ (отсюда название ROM BIOS). Она представляет собой набор программ проверки и обслуживания аппаратуры компьютера, и выполняет роль посредника между DOS и аппаратурой. BIOS получает управление при включении и сбросе системной платы, тестирует саму плату и основные блоки компьютера - видеоадаптер, клавиатуру, контроллеры дисков и портов ввода/вывода, настраивает Chipset платы и загружает внешнюю операционную систему. При работе под DOS/Windows BIOS управляет основными устройствами, при работе под OS/2, UNIX, WinNT BIOS практически не используется, выполняя лишь начальную проверку и настройку.

Обычно на системной плате установлено только ПЗУ с системным (Main, System) BIOS, отвечающим за саму плату и контроллеры FDD, HDD, портов и клавиатуры; в системный BIOS практически всегда входит System Setup - программа настройки системы. Видеоадаптеры и контроллеры HDD с интерфейсом ST-506 (MFM) и SCSI имеют собственные BIOS в отдельных ПЗУ; их также могут иметь и другие платы - интеллектуальные контроллеры дисков и портов, сетевые карты и т.п.

Обычно BIOS для современных системных плат разрабатывается одной из специализирующихся на этом фирм - Award Software, American Megatrends Inc. (AMI), реже - Phoenix Technology, Microid Research; в данное время наиболее популярен Award BIOS 4.51G. Некоторые производители плат (например, IBM, Intel, Acer) сами разрабатывают BIOS'ы для них. Иногда для одной и той же платы имеются версии BIOS от разных производителей - в этом случае допускается копировать прошивки или заменять микросхемы ПЗУ; в объем же случае каждая версия BIOS привязана к конкретной модели платы.

Раньше BIOS зашивался в однократно программируемые ПЗУ либо в ПЗУ с ультрафиолетовым стиранием; сейчас в основном выпускаются платы с электрически перепрограммируемыми ПЗУ (Flash ROM), которые допускают перешивку BIOS средствами самой платы. Это позволяет исправлять заводские ошибки в BIOS, изменять заводские умолчания, программировать собственные экранные заставки и т.п.

Тип микросхемы ПЗУ обычно можно определить по маркировке: 27xxxx - обычное ПЗУ, 28xxxx или 29xxxx - flash. Если на корпусе микросхемы 27xxxx есть прозрачное окно - это ПЗУ с ультрафиолетовым стиранием, которое можно "перешить" программатором; если окна нет - это однократно программируемое ПЗУ, которое в общем случае можно лишь заменить на другое.

- Что такое Bus Mastering?

Способность внешнего устройства самостоятельно, без участия процессора, управлять шиной (пересылать данные, выдавать команды и сигналы управления). На время обмена устройство захватывает шину и становится главным, или ведущим (master) устройством. Такой подход обычно используется для освобождения процессора от операций пересылки команд и/или данных между двумя устройствами на одной шине. Частным случаем Bus Mastering является режим DMA, который осуществляет только внепроцессорную пересылку данных; в классической архитектуре PC этим занимается контроллер DMA, общий для всех устройств. Каждое же Bus Mastering-устройство имеет собственный подобный контроллер, что позволяет избавиться от проблем с распределением DMA-каналов и преодолеть ограничения стандартного DMA-контроллера (16-разрядность, способность адресовать только первые 16 Мб ОЗУ, низкое быстродействие и т.п.).

- Чем отличаются шины XT-Bus, ISA, EISA, VLB, PCI, PCMCIA и MCA?

XT-Bus - шина архитектуры XT - первая в семействе IBM PC. Относительно проста, поддерживает обмен 8-разрядными данными внутри 20-разрядного (1 Мб) адресного пространства (обозначается как "разрядность 8/20"), работает на частоте 4.77 МГц. Совместное использование линий IRQ в общем случае невозможно. Конструктивно оформлена в 62-контактних разъемах.

ISA (Industry Standard Architecture - архитектура промышленного стандарта) - основная шина на компьютерах типа PC AT (другое название - AT-Bus). Является расширением XT-Bus, разрядность - 16/24 (16 Мб), тактовая частота - 8 МГц, предельная пропускная способность - 5.55 Мб/с. Разделение IRQ также невозможно. Возможна нестандартная организация Bus Mastering, но для этого нужен запрограммированный 16-разрядный канал DMA. Конструктив - 62-контактный разъем XT-Bus с прилегающим к нему 36-контактным разъемом расширения.

EISA (Enhanced ISA - расширенная ISA) - функциональное и конструктивное расширение ISA. Внешне разъемы имеют такой же вид, как и ISA, и в них могут вставляться платы ISA, но в глубине разъема находятся дополнительные ряды контактов EISA, а платы EISA имеют более высокую ножевую часть разъема с дополнительными рядами контактов. Разрядность - 32/32 (адресное пространство - 4 Гб), работает также на частоте 8 МГц. Предельная пропускная способность - 32 Мб/с. Поддерживает Bus Mastering - режим управления шиной со стороны любого из устройств на шине, имеет систему арбитража для управления доступом устройств у шине, позволяет автоматически настраивать параметры устройств, возможно разделение каналов IRQ и DMA.

MCA (Micro Channel Architecture - микроканальная архитектура) - шина компьютеров PS/2 фирмы IBM. Не совместима ни с одной другой, разрядность - 32/32, (базовая - 8/24, остальные - в качестве расширений). Поддерживает Bus Mastering, имеет арбитраж и автоматическую конфигурацию, синхронная (жестко фиксирована длительность цикла обмена), предельная пропускная способность - 40 Мб/с. Конструктив - одно-трехсекционный разъем (такой же, как у VLB). Первая, основная, секция - 8-разрядная (90 контактов), вторая - 16-разрядное расширение (22 контакта), третья - 32-разрядное расширение (52 контакта). В основной секции предусмотрены линии для передачи звуковых сигналов. Дополнительно рядом с одним из разъемов может устанавливаться разъем видеорасширения (20 контактов). EISA и MCA во многом параллельны, появление EISA было обусловлено собственностью IBM на архитектуру MCA.

VLB (VESA Local Bus - локальная шина стандарта VESA) - 32-разрядное дополнение к шине ISA. Конструктивно представляет собой дополнительный разъем (116-контактный, как у MCA) при разъеме ISA. Разрядность - 32/32, тактовая частота - 25..50 МГц, предельная скорость обмена - 130 Мб/с. Электрически выполнена в виде расширения локальной шины процессора - большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации. Из-за этого возрастает нагрузка на выходные каскады процессора, ухудшается качество сигналов на локальной шине и снижается надежность обмена по ней. Поэтому VLB имеет жесткое ограничение на количество устанавливаемых устройств: при 33 МГц - три, 40 МГц - два, и при 50 МГц - одно, причем желательно - интегриpованное в системную плату.

PCI (Peripheral Component Interconnect - соединение внешних компонент) - развитие VLB в сторону EISA/MCA. Не совместима ни с какими другими, разрядность - 32/32 (расширенный вариант - 64/64), тактовая частота - до 33 МГц (PCI 2.1 - до 66 МГц), пропускная способность - до 132 Мб/с (264 Мб/с для 32/32 на 66 МГц и 528 Мб/с для 64/64 на 66 МГц), поддержка Bus Mastering и автоконфигурации. Количество разъемов шины на одном сегменте ограничего четырьмя. Сегментов может быть несколько, они соединяются друг с другом посредством мостов (bridge). Сегменты могут объединяться в различные топологии (дерево, звезда и т.п.). Самая популярная шина в настоящее время, используется также на других компьютерах. Разъем похожа на MCA/VLB, но чуть длиннее (124 контакта). 64-разрядный разъем имеет дополнительную 64-контактную секцию с собственным ключом. Все разъемы и карты к ним делятся на поддерживающие уровни сигналов 5 В, 3.3 В и универсальные; первые два типа должны соответствовать друг другу, универсальные карты ставятся в любой разъем.

Существует также расширение MediaBus, введенное фирмой ASUSTek - дополнительный разъем содержит сигналы шины ISA.

PCMCIA (Personal Computer Memory Card International Association - ассоциация производителей плат памяти для персональных компьютеров) - внешняя шина компьютеров класса NoteBook. Другое название модуля PCMCIA - PC Card. Предельно проста, разрядность - 16/26 (адресное пространство - 64 Мб), поддерживает автоконфигурацию, возможно подключение и отключение устройств в процессе работы компьютера. Конструктив - миниатюрный 68-контактный разъем. Контакты питания сделаны более длинными, что позволяет вставлять и вынимать карту при включенном питании компьютера.

- Какие типы микросхем памяти используются в системных платах?

Из микросхем памяти (RAM - Random Access Memory, память с произвольным доступом) используется два основных типа: статическая (SRAM - Static RAM) и динамическая (DRAM - Dynamic RAM).

В статической памяти элементы (ячейки) построены на различных вариантах триггеров - схем с двумя устойчивыми состояниями. После записи бита в такую ячейку она может пребывать в этом состоянии столь угодно долго - необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается полный адрес, который при помощи внутреннего дешифратора преобразуется в сигналы выборки конкретных ячеек. Ячейки статической памяти имеют малое время срабатывания (единицы-десятки наносекунд), однако микросхемы на их основе имеют низкую удельную плотность данных (порядка единиц Мбит на корпус) и высокое энергопотребление. Поэтому статическая память используется в основном в качестве буферной (кэш-память).

В динамической памяти ячейки построены на основе областей с накоплением зарядов, занимающих гораздо меньшую площадь, нежели триггеры, и практически не потребляющих энергии при хранении. При записи бита в такую ячейку в ней формируется электрический заряд, который сохраняется в течение нескольких миллисекунд; для постоянного сохранения заряда ячейки необходимо регенерировать - перезаписывать содержимое для восстановления зарядов. Ячейки микросхем динамической памяти организованы в виде прямоугольной (обычно - квадратной) матрицы; при обращении к микросхеме на ее входы вначале подается адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe - строб адреса строки), затем, через некоторое время - адрес столбца, сопровождаемый сигналом CAS (Column Address Strobe - строб адреса столбца). При каждом обращении к ячейке регенерируют все ячейки выбранной строки, поэтому для полной регенерации матрицы достаточно перебрать адреса строк. Ячейки динамической памяти имеют большее время срабатывания (десятки-сотни наносекунд), но большую удельную плотность (порядка десятков Мбит на корпус) и меньшее энергопотребление. Динамическая память используется в качестве основной.

Обычные виды SRAM и DRAM называют также асинхронными - потому, что установка адреса, подача управляющих сигналов и чтение/запись данных могут выполняться в произвольные моменты времени - необходимо только соблюдение временнЫх соотношений между этими сигналами. В эти временные соотношения включены так называемые охранные интервалы, необходимые для стабилизации сигналов, которые не позволяют достичь теоретически возможного быстродействия памяти. Существуют также синхронные виды памяти, получающие внешний синхросигнал, к импульсам которого жестко привязаны моменты подачи адресов и обмена данными; помимо экономии времени на охранных интервалах, они позволяют более полно использовать внутреннюю конвейеризацию и блочный доступ.

FPM DRAM (Fast Page Mode DRAM - динамическая память с быстрым страничным доступом) активно используется в последние несколько лет. Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора строки матрицы и удержании RAS допускает многократную установку адреса столбца, стробируемого CAS, а также быструю регенерацию по схеме "CAS прежде RAS". Первое позволяет ускорить блочные передачи, когда весь блок данных или его часть находятся внутри одной строки матрицы, называемой в этой системе страницей, а второе - снизить накладные расходы на регенерацию памяти.

EDO (Extended Data Out - расширенное время удержания данных на выходе) фактически представляют собой обычные микросхемы FPM, на выходе которых установлены регистры-защелки данных. При страничном обмене такие микросхемы работают в режиме простого конвейера: удерживают на выходах данных содержимое последней выбранной ячейки, в то время как на их входы уже подается адрес следующей выбираемой ячейки. Это позволяет примерно на 15% по сравнению с FPM ускорить процесс считывания последовательных массивов данных. При случайной адресации такая память ничем не отличается от обычной.

BEDO (Burst EDO - EDO с блочным доступом) - память на основе EDO, работающая не одиночными, а пакетными циклами чтения/записи. Современные процессоры, благодаря внутреннему и внешнему кэшированию команд и данных, обмениваются с основной памятью преимущественно блоками слов максимальной ширины. В случае памяти BEDO отпадает необходимость постоянной подачи последовательных адресов на входы микросхем с соблюдением необходимых временных задержек - достаточно стробировать переход к очередному слову отдельным сигналом.

SDRAM (Synchronous DRAM - синхронная динамическая память) - память с синхронным доступом, работающая быстрее обычной асинхронной (FPM/EDO/BEDO). Помимо синхронного метода доступа, SDRAM использует внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать выборку из одного банка с установкой адреса в другом банке. SDRAM также поддерживает блочный обмен. Основная выгода от использования SDRAM состоит в поддержке последовательного доступа в синхронном режиме, где не требуется дополнительных тактов ожидания. При случайном доступе SDRAM работает практически с той же скоростью, что и FPM/EDO.

PB SRAM (Pipelined Burst SRAM - статическая память с блочным конвейерным доступом) - разновидность синхронных SRAM с внутренней конвейеризацией, за счет которой примерно вдвое повышается скорость обмена блоками данных.

Микросхемы памяти имеют четыре основные характеристики - тип, объем, структуру и время доступа. Тип обозначает статическую или динамическую память, объем показывает общую емкость микросхемы, а структура - количество ячеек памяти и разрядность каждой ячейки. Например, 28/32-выводные DIP-микросхемы SRAM имеют восьмиразрядную структуру (8k*8, 16k*8, 32k*8, 64k*8, 128k*8), и кэш для 486 объемом 256 кб будет состоять из восьми микросхем 32k*8 или четырех микросхем 64k*8 (речь идет об области данных - дополнительные микросхемы для хранения признаков (tag) могут иметь другую структуру). Две микросхемы по 128k*8 поставить уже нельзя, так как нужна 32-разрядная шина данных, что могут дать только четыре параллельных микросхемы. Распространенные PB SRAM в 100-выводных корпусах PQFP имеют 32-разрядную структуру 32k*32 или 64k*32 и используются по две или по четыре в платах для Pentuim.

Аналогично, 30-контактные SIMM имеют 8-разрядную структуру и ставятся с процессорами 286, 386SX и 486SLC по два, а с 386DX, 486DLC и обычными 486 - по четыре. 72-контактные SIMM имеют 32-разрядную структуру и могут ставиться с 486 по одному, а с Pentium и Pentium Pro - по два. 168-контактные DIMM имеют 64-разрядную структуры и ставятся в Pentium и Pentium Pro по одному. Установка модулей памяти или микросхем кэша в количестве больше минимального позволяет некоторым платам ускорить работу с ними, используя принцип расслоения (Interleave - чередование).

Время доступа характеризует скорость работы микросхемы и обычно указывается в наносекундах через тире в конце наименования. На более медленных динамических микросхемах могут указываться только первые цифры (-7 вместо -70, -15 вместо -150), на более быстрых статических "-15" или "-20" обозначают реальное время доступа к ячейке. Часто на микросхемах указывается минимальное из всех возможных времен доступа - например, распространена маркировка 70 нс EDO DRAM, как 50, или 60 нс - как 45, хотя такой цикл достижим только в блочном режиме, а в одиночном режиме микросхема по-прежнему срабатывает за 70 или 60 нс. Аналогичная ситуация имеет место в маркировке PB SRAM: 6 нс вместо 12, и 7 - вместо 15. Микросхемы SDRAM обычно маркируются временем доступа в блочном режиме (10 или 12 нс).

Ниже приведены примеры типовых маркировок микросхем памяти; в обозначении обычно (но не всегда) присутствует объем в килобитах и/или структура (разрядность адреса и данных).

Статические:

61256 - 32k*8 (256 кбит, 32 кб)

62512 - 64k*8 (512 кбит, 64 кб)

32C32 - 32k*32 (1 Мбит, 128 кб)

32C64 - 64k*32 (2 Мбит, 256 кб)
Динамические:

41256 - 256k*1 (256 кбит, 32 кб)

44256, 81C4256 - 256k*4 (1 Мбит, 128 кб)

411000, 81C1000 - 1M*1 (1 Мбит, 128 кб)

441000, 814400 - 1M*4 (4 Мбит, 512 кб)

41C4000 - 4M*4, (16 Мбит, 2 Мб)

MT4C16257 - 256k*16 (4 Мбит, 512 кб)

MT4LC16M4A7 - 16M*8 (128 Мбит, 16 Мб)

MT4LC2M8E7 - 2M*8 (16 Мбит, 2 Мб, EDO)

MT4C16270 - 256k*16 (4 Мбит, 512 кб, EDO)
Микросхемы EDO часто (но далеко не всегда) имеют в обозначении "некруглые" числа: например, 53C400 - обычная DRAM, 53C408 - EDO DRAM

 

Содержание 

Обсудить в форуме...>>>>

 

Каталог

CLX TOP - 100





Rambler's Top100 Рейтинг@Mail.ru PROext: Top 1000

 

Интернет портал DIWAXX.RU - FAQ по системным платам IBM PC, Chipset, BIOS AMI, AWARD, Phoenix, Acer, IRQ и DMA, ПЗУ, материнские платы, FAQ по системным платам IBM PC, Chipset, BIOS AMI, AWARD, Phoenix, Acer, IRQ и DMA, ПЗУ, материнские платы, Интернет портал DIWAXX.RU - FAQ по системным платам IBM PC, Chipset, BIOS AMI, AWARD, Phoenix, Acer, IRQ и DMA, ПЗУ, материнские платы, FAQ по системным платам IBM PC, Chipset, BIOS AMI, AWARD, Phoenix, Acer, IRQ и DMA, ПЗУ, материнские платы, Интернет портал DIWAXX.RU - FAQ по системным платам IBM PC, Chipset, BIOS AMI, AWARD, Phoenix, Acer, IRQ и DMA, ПЗУ, материнские платы, FAQ по системным платам IBM PC, Chipset, BIOS AMI, AWARD, Phoenix, Acer, IRQ и DMA, ПЗУ, материнские платы
bigmir)net TOP 100